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OSCILLATING

Neutrinos come in three types, called flavors. 
There are electron neutrinos, muon neutri-
nos and tau neutrinos. One of the strangest 
aspects of neutrinos is that they don’t pick 
just one flavor and stick to it. They oscillate 
between all three.

MYSTERIOUS

Neutrinos are mysterious. Experiments seem 
to hint at the possible existence of a fourth 
type of neutrino: a sterile neutrino, which would 
interact even more rarely than the others. 

VERY MYSTERIOUS

Scientists also wonder if neutrinos are their 
own antiparticles. If they are, they could have 
played a role in the early universe, right after 
the big bang, when matter came to outnumber 
antimatter just enough to allow us to exist.

ABUNDANT

Of all particles with mass, neutrinos are the 
most abundant in nature. They’re also some  
of the least interactive. Roughly a thousand 
trillion of them pass harmlessly through your 
body every second.

FUNDAMENTAL

Neutrinos are fundamental particles, which 
means that—like quarks and photons and  
electrons—they cannot be broken down into 
any smaller bits.

ELUSIVE

Neutrinos are difficult but not impossible to  
catch. Scientists have developed many differ-
ent types of particle detectors to study them.

LIGHTWEIGHT

Neutrinos weigh almost nothing, and they 
travel close to the speed of light. Neutrino 
masses are so small that so far no experi-
ment has succeeded in measuring them. The 
masses of other fundamental particles come 
from the Higgs field, but neutrinos might get 
their masses another way.

DIVERSE

Neutrinos are created in many processes in 
nature. They are produced in the nuclear 
reactions in the sun, particle decays in the 
Earth, and the explosions of stars. They are 
also produced by particle accelerators and  
in nuclear power plants.

 NEUTRINOS
  ARE…
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• |�m2
31| ⇡ 30 �m2

21 > 0 SNO

• Normal Ordering: m2
1 < m2

2 < m2
3

and Inverted Ordering: m2
3 < m2

1 < m2
2

NO⌫A, LBNF, · · ·

• 0.06 eV <
P

mi < 0.5 eV ⇡ me/106

 ✓23 !

✓23

|Uµ3|2(1� |Uµ3|2) ) |Uµ3|2( |Uµ1|2+|Uµ2|2 )

( |Uµ1|2+|Uµ2|2+|Uµ3|2 )

– Typeset by FoilTEX – 1

500 km/GeV

15,000 km/GeV
in vacuum



Stephen Parke, Fermilab                                      NuTau’21 @ BNL/Online                                                          9/28/2021                      

PMNS matrix

2

flavor 
states

Mass 
Eigenstates

|�m2
31| ⇡ 30 �m2

21 > 0 SNO

• Normal Ordering: m2
1 < m2

2 < m2
3

and Inverted Ordering: m2
3 < m2

1 < m2
2

 ✓23 !

✓23

|Uµ3|2(1� |Uµ3|2) ) |Uµ3|2( |Uµ1|2+|Uµ2|2 )

( |Uµ1|2+|Uµ2|2+|Uµ3|2 )

– Typeset by FoilTEX – 1

0⌫�� Decay

• |�m2
31| ⇡ 30 �m2

21 > 0 SNO

• Normal Ordering: m2
1 < m2

2 < m2
3

and Inverted Ordering: m2
3 < m2

1 < m2
2

NO⌫A, DUNE, HyperK
PINGU, ORCA · · ·, JUNO

Marginalized over ✓23

Marginalized over ✓13

What about
� v sin

2 ✓23,
Marginalized
over ✓13 !

– Typeset by FoilTEX – 2

• |�m2
31| ⇡ 30 �m2

21 > 0 SNO

• Normal Ordering: m2
1 < m2

2 < m2
3

and Inverted Ordering: m2
3 < m2

1 < m2
2

NO⌫A, LBNF, · · ·

• 0.06 eV <
P

mi < 0.5 eV ⇡ me/106

 ✓23 !

✓23

|Uµ3|2(1� |Uµ3|2) ) |Uµ3|2( |Uµ1|2+|Uµ2|2 )

( |Uµ1|2+|Uµ2|2+|Uµ3|2 )

– Typeset by FoilTEX – 1

500 km/GeV

15,000 km/GeV
in vacuum



Stephen Parke, Fermilab                                      NuTau’21 @ BNL/Online                                                          9/28/2021                      

Usual representation:

3

13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i %= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 %= 0 and ∆m2
31 %= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |∆m2

31| or |∆m2
32|, can be associated with

the experimentally observed oscillations of the atmospheric νµ and ν̄µ and accelerator
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13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i %= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 %= 0 and ∆m2
31 %= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |∆m2

31| or |∆m2
32|, can be associated with

the experimentally observed oscillations of the atmospheric νµ and ν̄µ and accelerator
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All must be satisfied if U is unitary !
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note:  13 - 9 = 4
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• 13 real parameters after rephrasing the leptonic fields !

|Uµ3|2(1 � |Uµ3|2)

) |Uµ3|2( |Uµ1|2+|Uµ2|2 )

( |Uµ1|2+|Uµ2|2+|Uµ3|2 )

|Ue2|2

) |Ue2|2
( |Ue2|2+|Uµ2|2+|U⌧2|2 )

|Ue3|2(1 � |Ue3|2)

) |Ue3|2( |Ue1|2+|Ue2|2 )
( |Ue1|2+|Ue2|2+|Ue3|2 )

|Ue1|2|Ue2|2

) |Ue1|2|Ue2|2
( |Ue1|2+|Ue2|2+|Ue3|2 )

– Typeset by FoilTEX – 3

• 13 real parameters after rephrasing the leptonic fields !

• compared to 4 real parameters for unitary case.
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note:  13 - 9 = 4
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Solar:

14

SNO (CC/NC ratio), ...
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|Ue3|2(1 � |Ue3|2)

|Ue2|2

|Ue1|2|Ue2|2

|Uµ3|2|U⌧3|2
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• also SNO’s NC fluxes constrains |Ue1|2 + |Ue2|2 + |Ue3|2

|U⌧3|2|Uµ3|2

) R{�U⇤
⌧3Uµ3 (U⌧1U⇤

µ1 + U⌧2U⇤
µ2)}

|Ue3|2|Uµ3|2 + · · ·

) R{�U⇤
e3Uµ3 (Ue1U⇤

µ1 + Ue2U⇤
µ2)} + · · ·

• Only places the degeneracy is broken between |U↵1| and |U↵2|:

• KamLAND wiggles and SNO’s NC flux plus feed through ! ! !

|Uµ3|2(1 � |Uµ3|2)

|Ue3|2(1 � |Ue3|2)

|Ue2|2
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νe disappearance:   L/E ~ 500 m/MeV
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Daya Bay, 
RENO,  
Double Chooz|Uµ3|2(1 � |Uµ3|2)

) |Uµ3|2( |Uµ1|2+|Uµ2|2 )
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) |Ue2|2
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νe disappearance: L/E ~ 15 km/MeV

16

KamLAND wiggles

|Uµ3|2(1 � |Uµ3|2)

) |Uµ3|2( |Uµ1|2+|Uµ2|2 )

( |Uµ1|2+|Uµ2|2+|Uµ3|2 )

|Ue2|2

) |Ue2|2
( |Ue2|2+|Uµ2|2+|U⌧2|2 )

|Ue3|2(1 � |Ue3|2)

) |Ue3|2( |Ue1|2+|Ue2|2 )
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|Ue1|2|Ue2|2

) |Ue1|2|Ue2|2
( |Ue1|2+|Ue2|2+|Ue3|2 )

|Uµ3|2(1 � |Uµ3|2)
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= 15,000 km/GeV

JUNO will do much better here !
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= 15,000 km/GeV

JUNO will do much better here !
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ντ appearance: L/E ~ 500 km/GeV

17

Opera and SK

|U⌧3|2|Uµ3|2

Only place |U↵1| and |U↵2|

|Uµ3|2(1 � |Uµ3|2)

|Ue3|2(1 � |Ue3|2)

|Ue2|2

|Ue1|2|Ue2|2

|Uµ3|2|U⌧3|2

|Ue3|2|Uµ3|2 + · · ·

|Ue2|2 + |Uµ2|2 + |U⌧2|2

|Ue1|2 + |Ue2|2 + |Ue3|2 known to few %
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νe appearance: L/E ~ 500 km/GeV

18

T2K, MINOS 
NOvA,  
LBNF, HyperK, 
SuperPINGU, ...
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Summary (unitary case):
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where is our information ? 
non-unitary case:
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• also SNO’s NC fluxes constrain |Ue1|2 + |Ue2|2 + |Ue3|2

|U⌧3|2|Uµ3|2

) R{�U⇤
⌧3Uµ3 (U⌧1U⇤

µ1 + U⌧2U⇤
µ2)}

|Ue3|2|Uµ3|2 + · · ·

) R{�U⇤
e3Uµ3 (Ue1U⇤

µ1 + Ue2U⇤
µ2)} + · · ·

• Only places the degeneracy is broken between |U↵1| and |U↵2|:

KamLAND wiggles and SNO’s NC flux ! ! !

|Uµ3|2(1 � |Uµ3|2)

|Ue3|2(1 � |Ue3|2)

|Ue2|2
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Non-Unitary ! ! !
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What about Theory ? ? ?
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ARE THERE LIGHT STERILE 
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Unitarity and the three flavour neutrino mixing matrix.

Stephen Parke1 and Mark Ross-Lonergan2

1Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O.Box 500, Batavia, IL 60510, USA
2IPPP, Department of Physics, Durham University, Durham DH1 3LE, UK

Unitarity is a fundamental property of any theory required to ensure we work in a theoretically
consistent framework. In comparison with the quark sector, experimental tests of unitarity for the
3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority
of our information on the neutrino mixing angles originates from ⌫e and ⌫µ disappearance experi-
ments, with the assumption of unitarity being invoked to constrain the remaining elements. New
physics can invalidate this assumption for the 3x3 subset and thus modify our precision measure-
ments. We perform a reanalysis to see how global knowledge is altered when one refits oscillation
results without assuming unitarity, and present 3� ranges for allowed UPMNS elements consistent
with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity
triangles, with the closure of the ⌫e⌫µ triangle being constrained to be  0.03, while the remaining
triangles are significantly less constrained to be  0.1 - 0.2. Similarly for the row and column nor-
malization, we find their deviation from unity is constrained to be  0.2 - 0.4, for four out of six
such normalisations, while for the ⌫µ and ⌫e row normalisation the deviations are constrained to be
 0.07, all at the 3� CL. We emphasise that there is significant room for new low energy physics,
especially in the ⌫⌧ sector which very few current experiments constrain directly.

With the knowledge of sin2 2✓13 now almost at the 5%
level, and interplay between the long baseline accelerator
⌫µ ! ⌫e appearance data [1, 2] and short baseline reactor
⌫e ! ⌫e disappearance [3–5] data, combined with prior
knowledge of ✓23 from ⌫µ ! ⌫µ disappearance data [6–8],
suggesting tentative global hints at �CP ⇡ 3⇡/2, there is
much merit to statements that we are now in the preci-
sion measurement era of neutrino physics. Our knowl-
edge of the distinct Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix elements comes from
the plethora of successful experiments that have run since
the first strong evidence for neutrino oscillations, inter-
preted as ⌫µ ! ⌫⌧ oscillations, was discovered by Super-
Kamiokande in 1998 [9]. However, one must always re-
member that our knowledge of the matrix elements is
predominately in the ⌫e and ⌫µ sectors, and comes pri-
marily from high statistics ⌫e disappearance and ⌫µ dis-
appearance experiments, with the concept of unitarity
being invoked to disseminate this information onto the
remaining elements. With more statistics, the long base-
line ⌫µ ! ⌫e and ⌫µ ! ⌫e appearance experiments such
as T2K [10] and NO⌫A [11] will aid in ⌫µ sector precision
measurements.

Unitarity of a mixing matrix is a necessary condition
for a theoretically consistent description of the under-
lying physics, as non-unitarity directly corresponds to
a violation of probability in the calculated amplitudes.
In the neutrino sector unitarity can be directly veri-
fied by precise measurement of each of the mixing ele-
ments to confirm the unitarity condition: U †U = 1 =
UU†. In this there are 12 dependant conditions, six
of which we will refer to as normalisations (sum of the
squares of each row or column, e.g the ⌫e normalisation
|Ue1|2+ |Ue2|2+ |Ue3|2 = 1) and six conditions that mea-
sure the degree with which each unitarity triangle closes
(e.g the ⌫e⌫µ triangle: Ue1U⇤

µ1 + Ue2U⇤
µ2 + Ue3U⇤

µ3 = 0).
Currently, from direct measurements of the individual

elements only, the ⌫e normalisation is the sole condition
that can be reasonably constrained without any further
assumptions as to the origin of the non-unitarity [12].
In the quark sector, the analogous situation involv-

ing the Cabibbo-Kobayashi-Maskawa (CKM) matrix has
been subject to intense verification as many distinct ex-
periments have access to probes of all of the VCKM el-
ements individually. Current data shows that the as-
sumption of unitarity for the 3x3 CKM matrix is valid in
the quark sector to a high precision, with the strongest
normalisation constraint being |Vud|2 + |Vus|2 + |Vub|2 =
0.9999 ± 0.0006 and the weakest still being significant
at |Vub|2 + |Vcb|2 + |Vtb|2 = 1.044± 0.06 [13]. Unlike the
quark sector, however, experimental tests of unitarity are
considerably weaker in the 3x3 UPMNS neutrino mixing
matrix. It remains an initial theoretical assumption in-
herent in many analyses [14–16], but is the basis for the
validity of the 3⌫ paradigm.
This non-unitarity can arise naturally in a large va-

riety of theories. A generic feature of many Beyond
the Standard Model scenarios is the inclusion of one
or more new massive fermionic singlets, uncharged un-
der the Standard Model (SM) gauge group, SU(3)C ⇥
SU(2)L⇥U(1)Y . If these new sterile states mix with the
SM neutrinos then the true mixing matrix is enlarged
from the 3x3 UPMNS matrix to a nxn matrix,

UExtended
PMNS =

0

BBBBB@

U3x3
PMNSz }| {

Ue1 Ue2 Ue3 · · · Uen

Uµ1 Uµ2 Uµ3 · · · Uµn

U⌧1 U⌧2 U⌧3 · · · U⌧n
...

...
...

. . .
...

Usn1 Usn2 Usn3 · · · Usnn

1
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discussion point for both the theoretical and experimen-
tal communities for decades. If they have masses at or

ar
X

iv
:1

50
8.

05
09

5v
1 

 [h
ep

-p
h]

  2
0 

A
ug

 2
01

5



Stephen Parke, Fermilab                                      NuTau’21 @ BNL/Online                                                          9/28/2021                      

ARE THERE LIGHT STERILE 

24

Unitarity and the three flavour neutrino mixing matrix.

Stephen Parke1 and Mark Ross-Lonergan2

1Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O.Box 500, Batavia, IL 60510, USA
2IPPP, Department of Physics, Durham University, Durham DH1 3LE, UK

Unitarity is a fundamental property of any theory required to ensure we work in a theoretically
consistent framework. In comparison with the quark sector, experimental tests of unitarity for the
3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority
of our information on the neutrino mixing angles originates from ⌫e and ⌫µ disappearance experi-
ments, with the assumption of unitarity being invoked to constrain the remaining elements. New
physics can invalidate this assumption for the 3x3 subset and thus modify our precision measure-
ments. We perform a reanalysis to see how global knowledge is altered when one refits oscillation
results without assuming unitarity, and present 3� ranges for allowed UPMNS elements consistent
with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity
triangles, with the closure of the ⌫e⌫µ triangle being constrained to be  0.03, while the remaining
triangles are significantly less constrained to be  0.1 - 0.2. Similarly for the row and column nor-
malization, we find their deviation from unity is constrained to be  0.2 - 0.4, for four out of six
such normalisations, while for the ⌫µ and ⌫e row normalisation the deviations are constrained to be
 0.07, all at the 3� CL. We emphasise that there is significant room for new low energy physics,
especially in the ⌫⌧ sector which very few current experiments constrain directly.

With the knowledge of sin2 2✓13 now almost at the 5%
level, and interplay between the long baseline accelerator
⌫µ ! ⌫e appearance data [1, 2] and short baseline reactor
⌫e ! ⌫e disappearance [3–5] data, combined with prior
knowledge of ✓23 from ⌫µ ! ⌫µ disappearance data [6–8],
suggesting tentative global hints at �CP ⇡ 3⇡/2, there is
much merit to statements that we are now in the preci-
sion measurement era of neutrino physics. Our knowl-
edge of the distinct Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix elements comes from
the plethora of successful experiments that have run since
the first strong evidence for neutrino oscillations, inter-
preted as ⌫µ ! ⌫⌧ oscillations, was discovered by Super-
Kamiokande in 1998 [9]. However, one must always re-
member that our knowledge of the matrix elements is
predominately in the ⌫e and ⌫µ sectors, and comes pri-
marily from high statistics ⌫e disappearance and ⌫µ dis-
appearance experiments, with the concept of unitarity
being invoked to disseminate this information onto the
remaining elements. With more statistics, the long base-
line ⌫µ ! ⌫e and ⌫µ ! ⌫e appearance experiments such
as T2K [10] and NO⌫A [11] will aid in ⌫µ sector precision
measurements.

Unitarity of a mixing matrix is a necessary condition
for a theoretically consistent description of the under-
lying physics, as non-unitarity directly corresponds to
a violation of probability in the calculated amplitudes.
In the neutrino sector unitarity can be directly veri-
fied by precise measurement of each of the mixing ele-
ments to confirm the unitarity condition: U †U = 1 =
UU†. In this there are 12 dependant conditions, six
of which we will refer to as normalisations (sum of the
squares of each row or column, e.g the ⌫e normalisation
|Ue1|2+ |Ue2|2+ |Ue3|2 = 1) and six conditions that mea-
sure the degree with which each unitarity triangle closes
(e.g the ⌫e⌫µ triangle: Ue1U⇤

µ1 + Ue2U⇤
µ2 + Ue3U⇤

µ3 = 0).
Currently, from direct measurements of the individual

elements only, the ⌫e normalisation is the sole condition
that can be reasonably constrained without any further
assumptions as to the origin of the non-unitarity [12].
In the quark sector, the analogous situation involv-

ing the Cabibbo-Kobayashi-Maskawa (CKM) matrix has
been subject to intense verification as many distinct ex-
periments have access to probes of all of the VCKM el-
ements individually. Current data shows that the as-
sumption of unitarity for the 3x3 CKM matrix is valid in
the quark sector to a high precision, with the strongest
normalisation constraint being |Vud|2 + |Vus|2 + |Vub|2 =
0.9999 ± 0.0006 and the weakest still being significant
at |Vub|2 + |Vcb|2 + |Vtb|2 = 1.044± 0.06 [13]. Unlike the
quark sector, however, experimental tests of unitarity are
considerably weaker in the 3x3 UPMNS neutrino mixing
matrix. It remains an initial theoretical assumption in-
herent in many analyses [14–16], but is the basis for the
validity of the 3⌫ paradigm.
This non-unitarity can arise naturally in a large va-

riety of theories. A generic feature of many Beyond
the Standard Model scenarios is the inclusion of one
or more new massive fermionic singlets, uncharged un-
der the Standard Model (SM) gauge group, SU(3)C ⇥
SU(2)L⇥U(1)Y . If these new sterile states mix with the
SM neutrinos then the true mixing matrix is enlarged
from the 3x3 UPMNS matrix to a nxn matrix,
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Unitarity is a fundamental property of any theory required to ensure we work in a theoretically
consistent framework. In comparison with the quark sector, experimental tests of unitarity for the
3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority
of our information on the neutrino mixing angles originates from ⌫e and ⌫µ disappearance experi-
ments, with the assumption of unitarity being invoked to constrain the remaining elements. New
physics can invalidate this assumption for the 3x3 subset and thus modify our precision measure-
ments. We perform a reanalysis to see how global knowledge is altered when one refits oscillation
results without assuming unitarity, and present 3� ranges for allowed UPMNS elements consistent
with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity
triangles, with the closure of the ⌫e⌫µ triangle being constrained to be  0.03, while the remaining
triangles are significantly less constrained to be  0.1 - 0.2. Similarly for the row and column nor-
malization, we find their deviation from unity is constrained to be  0.2 - 0.4, for four out of six
such normalisations, while for the ⌫µ and ⌫e row normalisation the deviations are constrained to be
 0.07, all at the 3� CL. We emphasise that there is significant room for new low energy physics,
especially in the ⌫⌧ sector which very few current experiments constrain directly.

With the knowledge of sin2 2✓13 now almost at the 5%
level, and interplay between the long baseline accelerator
⌫µ ! ⌫e appearance data [1, 2] and short baseline reactor
⌫e ! ⌫e disappearance [3–5] data, combined with prior
knowledge of ✓23 from ⌫µ ! ⌫µ disappearance data [6–8],
suggesting tentative global hints at �CP ⇡ 3⇡/2, there is
much merit to statements that we are now in the preci-
sion measurement era of neutrino physics. Our knowl-
edge of the distinct Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix elements comes from
the plethora of successful experiments that have run since
the first strong evidence for neutrino oscillations, inter-
preted as ⌫µ ! ⌫⌧ oscillations, was discovered by Super-
Kamiokande in 1998 [9]. However, one must always re-
member that our knowledge of the matrix elements is
predominately in the ⌫e and ⌫µ sectors, and comes pri-
marily from high statistics ⌫e disappearance and ⌫µ dis-
appearance experiments, with the concept of unitarity
being invoked to disseminate this information onto the
remaining elements. With more statistics, the long base-
line ⌫µ ! ⌫e and ⌫µ ! ⌫e appearance experiments such
as T2K [10] and NO⌫A [11] will aid in ⌫µ sector precision
measurements.

Unitarity of a mixing matrix is a necessary condition
for a theoretically consistent description of the under-
lying physics, as non-unitarity directly corresponds to
a violation of probability in the calculated amplitudes.
In the neutrino sector unitarity can be directly veri-
fied by precise measurement of each of the mixing ele-
ments to confirm the unitarity condition: U †U = 1 =
UU†. In this there are 12 dependant conditions, six
of which we will refer to as normalisations (sum of the
squares of each row or column, e.g the ⌫e normalisation
|Ue1|2+ |Ue2|2+ |Ue3|2 = 1) and six conditions that mea-
sure the degree with which each unitarity triangle closes
(e.g the ⌫e⌫µ triangle: Ue1U⇤

µ1 + Ue2U⇤
µ2 + Ue3U⇤

µ3 = 0).
Currently, from direct measurements of the individual

elements only, the ⌫e normalisation is the sole condition
that can be reasonably constrained without any further
assumptions as to the origin of the non-unitarity [12].
In the quark sector, the analogous situation involv-

ing the Cabibbo-Kobayashi-Maskawa (CKM) matrix has
been subject to intense verification as many distinct ex-
periments have access to probes of all of the VCKM el-
ements individually. Current data shows that the as-
sumption of unitarity for the 3x3 CKM matrix is valid in
the quark sector to a high precision, with the strongest
normalisation constraint being |Vud|2 + |Vus|2 + |Vub|2 =
0.9999 ± 0.0006 and the weakest still being significant
at |Vub|2 + |Vcb|2 + |Vtb|2 = 1.044± 0.06 [13]. Unlike the
quark sector, however, experimental tests of unitarity are
considerably weaker in the 3x3 UPMNS neutrino mixing
matrix. It remains an initial theoretical assumption in-
herent in many analyses [14–16], but is the basis for the
validity of the 3⌫ paradigm.
This non-unitarity can arise naturally in a large va-

riety of theories. A generic feature of many Beyond
the Standard Model scenarios is the inclusion of one
or more new massive fermionic singlets, uncharged un-
der the Standard Model (SM) gauge group, SU(3)C ⇥
SU(2)L⇥U(1)Y . If these new sterile states mix with the
SM neutrinos then the true mixing matrix is enlarged
from the 3x3 UPMNS matrix to a nxn matrix,
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Unitarity is a fundamental property of any theory required to ensure we work in a theoretically
consistent framework. In comparison with the quark sector, experimental tests of unitarity for the
3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority
of our information on the neutrino mixing angles originates from ⌫e and ⌫µ disappearance experi-
ments, with the assumption of unitarity being invoked to constrain the remaining elements. New
physics can invalidate this assumption for the 3x3 subset and thus modify our precision measure-
ments. We perform a reanalysis to see how global knowledge is altered when one refits oscillation
results without assuming unitarity, and present 3� ranges for allowed UPMNS elements consistent
with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity
triangles, with the closure of the ⌫e⌫µ triangle being constrained to be  0.03, while the remaining
triangles are significantly less constrained to be  0.1 - 0.2. Similarly for the row and column nor-
malization, we find their deviation from unity is constrained to be  0.2 - 0.4, for four out of six
such normalisations, while for the ⌫µ and ⌫e row normalisation the deviations are constrained to be
 0.07, all at the 3� CL. We emphasise that there is significant room for new low energy physics,
especially in the ⌫⌧ sector which very few current experiments constrain directly.

With the knowledge of sin2 2✓13 now almost at the 5%
level, and interplay between the long baseline accelerator
⌫µ ! ⌫e appearance data [1, 2] and short baseline reactor
⌫e ! ⌫e disappearance [3–5] data, combined with prior
knowledge of ✓23 from ⌫µ ! ⌫µ disappearance data [6–8],
suggesting tentative global hints at �CP ⇡ 3⇡/2, there is
much merit to statements that we are now in the preci-
sion measurement era of neutrino physics. Our knowl-
edge of the distinct Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix elements comes from
the plethora of successful experiments that have run since
the first strong evidence for neutrino oscillations, inter-
preted as ⌫µ ! ⌫⌧ oscillations, was discovered by Super-
Kamiokande in 1998 [9]. However, one must always re-
member that our knowledge of the matrix elements is
predominately in the ⌫e and ⌫µ sectors, and comes pri-
marily from high statistics ⌫e disappearance and ⌫µ dis-
appearance experiments, with the concept of unitarity
being invoked to disseminate this information onto the
remaining elements. With more statistics, the long base-
line ⌫µ ! ⌫e and ⌫µ ! ⌫e appearance experiments such
as T2K [10] and NO⌫A [11] will aid in ⌫µ sector precision
measurements.

Unitarity of a mixing matrix is a necessary condition
for a theoretically consistent description of the under-
lying physics, as non-unitarity directly corresponds to
a violation of probability in the calculated amplitudes.
In the neutrino sector unitarity can be directly veri-
fied by precise measurement of each of the mixing ele-
ments to confirm the unitarity condition: U †U = 1 =
UU†. In this there are 12 dependant conditions, six
of which we will refer to as normalisations (sum of the
squares of each row or column, e.g the ⌫e normalisation
|Ue1|2+ |Ue2|2+ |Ue3|2 = 1) and six conditions that mea-
sure the degree with which each unitarity triangle closes
(e.g the ⌫e⌫µ triangle: Ue1U⇤

µ1 + Ue2U⇤
µ2 + Ue3U⇤

µ3 = 0).
Currently, from direct measurements of the individual

elements only, the ⌫e normalisation is the sole condition
that can be reasonably constrained without any further
assumptions as to the origin of the non-unitarity [12].
In the quark sector, the analogous situation involv-

ing the Cabibbo-Kobayashi-Maskawa (CKM) matrix has
been subject to intense verification as many distinct ex-
periments have access to probes of all of the VCKM el-
ements individually. Current data shows that the as-
sumption of unitarity for the 3x3 CKM matrix is valid in
the quark sector to a high precision, with the strongest
normalisation constraint being |Vud|2 + |Vus|2 + |Vub|2 =
0.9999 ± 0.0006 and the weakest still being significant
at |Vub|2 + |Vcb|2 + |Vtb|2 = 1.044± 0.06 [13]. Unlike the
quark sector, however, experimental tests of unitarity are
considerably weaker in the 3x3 UPMNS neutrino mixing
matrix. It remains an initial theoretical assumption in-
herent in many analyses [14–16], but is the basis for the
validity of the 3⌫ paradigm.
This non-unitarity can arise naturally in a large va-

riety of theories. A generic feature of many Beyond
the Standard Model scenarios is the inclusion of one
or more new massive fermionic singlets, uncharged un-
der the Standard Model (SM) gauge group, SU(3)C ⇥
SU(2)L⇥U(1)Y . If these new sterile states mix with the
SM neutrinos then the true mixing matrix is enlarged
from the 3x3 UPMNS matrix to a nxn matrix,
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Unitarity is a fundamental property of any theory required to ensure we work in a theoretically
consistent framework. In comparison with the quark sector, experimental tests of unitarity for the
3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority
of our information on the neutrino mixing angles originates from ⌫e and ⌫µ disappearance experi-
ments, with the assumption of unitarity being invoked to constrain the remaining elements. New
physics can invalidate this assumption for the 3x3 subset and thus modify our precision measure-
ments. We perform a reanalysis to see how global knowledge is altered when one refits oscillation
results without assuming unitarity, and present 3� ranges for allowed UPMNS elements consistent
with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity
triangles, with the closure of the ⌫e⌫µ triangle being constrained to be  0.03, while the remaining
triangles are significantly less constrained to be  0.1 - 0.2. Similarly for the row and column nor-
malization, we find their deviation from unity is constrained to be  0.2 - 0.4, for four out of six
such normalisations, while for the ⌫µ and ⌫e row normalisation the deviations are constrained to be
 0.07, all at the 3� CL. We emphasise that there is significant room for new low energy physics,
especially in the ⌫⌧ sector which very few current experiments constrain directly.

With the knowledge of sin2 2✓13 now almost at the 5%
level, and interplay between the long baseline accelerator
⌫µ ! ⌫e appearance data [1, 2] and short baseline reactor
⌫e ! ⌫e disappearance [3–5] data, combined with prior
knowledge of ✓23 from ⌫µ ! ⌫µ disappearance data [6–8],
suggesting tentative global hints at �CP ⇡ 3⇡/2, there is
much merit to statements that we are now in the preci-
sion measurement era of neutrino physics. Our knowl-
edge of the distinct Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix elements comes from
the plethora of successful experiments that have run since
the first strong evidence for neutrino oscillations, inter-
preted as ⌫µ ! ⌫⌧ oscillations, was discovered by Super-
Kamiokande in 1998 [9]. However, one must always re-
member that our knowledge of the matrix elements is
predominately in the ⌫e and ⌫µ sectors, and comes pri-
marily from high statistics ⌫e disappearance and ⌫µ dis-
appearance experiments, with the concept of unitarity
being invoked to disseminate this information onto the
remaining elements. With more statistics, the long base-
line ⌫µ ! ⌫e and ⌫µ ! ⌫e appearance experiments such
as T2K [10] and NO⌫A [11] will aid in ⌫µ sector precision
measurements.

Unitarity of a mixing matrix is a necessary condition
for a theoretically consistent description of the under-
lying physics, as non-unitarity directly corresponds to
a violation of probability in the calculated amplitudes.
In the neutrino sector unitarity can be directly veri-
fied by precise measurement of each of the mixing ele-
ments to confirm the unitarity condition: U †U = 1 =
UU†. In this there are 12 dependant conditions, six
of which we will refer to as normalisations (sum of the
squares of each row or column, e.g the ⌫e normalisation
|Ue1|2+ |Ue2|2+ |Ue3|2 = 1) and six conditions that mea-
sure the degree with which each unitarity triangle closes
(e.g the ⌫e⌫µ triangle: Ue1U⇤

µ1 + Ue2U⇤
µ2 + Ue3U⇤

µ3 = 0).
Currently, from direct measurements of the individual

elements only, the ⌫e normalisation is the sole condition
that can be reasonably constrained without any further
assumptions as to the origin of the non-unitarity [12].
In the quark sector, the analogous situation involv-

ing the Cabibbo-Kobayashi-Maskawa (CKM) matrix has
been subject to intense verification as many distinct ex-
periments have access to probes of all of the VCKM el-
ements individually. Current data shows that the as-
sumption of unitarity for the 3x3 CKM matrix is valid in
the quark sector to a high precision, with the strongest
normalisation constraint being |Vud|2 + |Vus|2 + |Vub|2 =
0.9999 ± 0.0006 and the weakest still being significant
at |Vub|2 + |Vcb|2 + |Vtb|2 = 1.044± 0.06 [13]. Unlike the
quark sector, however, experimental tests of unitarity are
considerably weaker in the 3x3 UPMNS neutrino mixing
matrix. It remains an initial theoretical assumption in-
herent in many analyses [14–16], but is the basis for the
validity of the 3⌫ paradigm.
This non-unitarity can arise naturally in a large va-

riety of theories. A generic feature of many Beyond
the Standard Model scenarios is the inclusion of one
or more new massive fermionic singlets, uncharged un-
der the Standard Model (SM) gauge group, SU(3)C ⇥
SU(2)L⇥U(1)Y . If these new sterile states mix with the
SM neutrinos then the true mixing matrix is enlarged
from the 3x3 UPMNS matrix to a nxn matrix,

UExtended
PMNS =

0

BBBBB@

U3x3
PMNSz }| {

Ue1 Ue2 Ue3 · · · Uen

Uµ1 Uµ2 Uµ3 · · · Uµn

U⌧1 U⌧2 U⌧3 · · · U⌧n
...

...
...

. . .
...

Usn1 Usn2 Usn3 · · · Usnn

1

CCCCCA
. (1)

These so-called sterile neutrinos have been a major
discussion point for both the theoretical and experimen-
tal communities for decades. If they have masses at or
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FIG. 3: 1-D ��2 for the absolute value of the closure of the
three row (solid) and three column (dashed) unitarity tri-
angles, fitted with all spectral and normalisation data, when
considering new physics that enters above |�m2| � 10�2 eV2.
There is one unique unitarity triangle, the ⌫e⌫µ triangle, in
that it does not contain any ⌫⌧ elements and hence is con-
strained to be unitary at a level half an order of magnitude
better than the others. By comparison to Fig. 2 one can
clearly see the Cauchy-Schwartz constraints are satisfied.

of parameter space for 3+N models, increasing both the
appearance and disappearance bounds. Subsequently,
the long baseline program DUNE [60] will also be
able to significantly extend the constrained region of
⌫µ ! ⌫e appearance to lower mass di↵erences, leading
to increased constraints on the ⌫e⌫µ unitarity triangle
in this regime. An understanding of the neutrino flux
and cross sectional uncertainties are crucial for unitarity
measurements. Possible future experiments such as
a fully fledged Neutrino Factory [61] or the nuStorm
facility [62], with the uncertainty on their fluxes of the
order 1%, will be able to constrain the ⌫µ normalisation
and ⌫e⌫µ triangle far beyond what is currently obtain-
able. However, no one experiment can probe all scales
and complementarity is vital to definitively make a
statement about unitarity from new low-energy physics,
especially as there is little means to directly measure the
⌫⌧ sector. Improvement in ⌫⌧ appearance requires new
experiments with both an intense, well known beam of
high enough energy ⌫µ or ⌫e to kinematically produce
charged taus, as well as a detector technology capable
of e�ciently identifying them to a degree necessary

for precision high statistics measurements, both of
which are extremely di�cult tasks. Perhaps crucially
for ⌫⌧ measurements, Hyper-Kamiokande [63] will be
incredibly sensitive to atmospherically averaged steriles,
� 0.1 eV2, and will significantly improve the current
bounds on |U⌧1|2 + |U⌧2|2 + |U⌧3|2 in this regime, to
approximately 1� |U⌧1|2 + |U⌧2|2 + |U⌧3|2  0.07 at the
99% CL [64], which would bring it closer inline with the
other sectors.

In this paper we have emphasised the fact that
current experimental bounds on unitarity within the 3⌫
paradigm allows for considerable violation, and without
the unitarity assumption, the precision on the individual
UPMNS elements can vary significantly (up to 104% in
the case of |U⌧3|). However, we find no evidence for non-
unitarity. The prospects of directly measuring all the 12
unitarity constraints with high precision are poor, and
even when one allows for additional model-dependant
sterile searches we can only constrain the amount of
non-unitarity to be . 0.2 - 0.4, for four out of six of
the row and columns normalisations, with the ⌫µ and ⌫e
normalisation deviations from unity constrained to be 
0.07, all at the 3� CL, see Fig. 2. Similarly, five out of
six of the unitarity triangles are only constrained to be
. 0.1 - 0.2, with opening of the remaining ⌫e⌫µ triangle
being constrained to be  0.03, again at the 3� CL, see
Fig. 3. One must be careful when assessing the current
experimental regime with the addition of new physics we
are currently insensitive to, as without the assumption of
unitarity there is much room for new e↵ects, especially
in the ⌫⌧ sector where currently significant information
comes from the unitarity assumption and not direct
measurements.
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FIG. 2: 1-D ��2 for deviation of both UPMNS row (solid) and
column (dashed) normalisations, fitted with all spectral and
normalisation data, when considering new physics that enters
above |�m2| � 10�2eV2.

as |Uµ1| and |Uµ2| only appear in the degenerate com-
bination |Uµ1|2 + |Uµ2|2, they cannot be distinguished
individually. This degeneracy is very weakly broken by
the ⌫µ ! ⌫e appearance experiment T2K [1], and will be
improved upon taking of more data and with future high
statistics NO⌫A [11] results. The addition of this nor-
malisation and sterile data in the 3⌫ unitarity case does
not change anything in the fit. From here on we will
discuss only the main results, as calculated including all
normalisation and sterile search data.

The addition of this sterile search and normalisation
data improves the situation significantly. If we define
the shift in range of allowed values as the ratio of the
di↵erence in 3� ranges without and with unitarity, to
that derived with unitarity, the increase in parameter
space for |Uei|, i = 2, 3 and |Uµi|, i = 1, 2, 3 are all 
10% (4%, 8%, 8%, 7% and 4% respectively), with |Ue1|
taking the majority of the discrepancy in the ⌫e sector,
with an increase of allowed range of 68%, primarily
due to the weaker bounds from KamLAND compared
to the SBL reactors, and that |Ue1|2 forms the bulk of
|Ue1|2 + |Ue2|2 + |Ue3|2. The entire ⌫⌧ sector, however,
may contain substantial discrepancies from unitarity
with shifts in allowed regions of 37%, 46% and 104%
respectively. We have little or no current mechanisms
to directly measure any ⌫⌧ elements and we have not
yet observed any oscillation amplitude peaks, even the
recent 5� discovery of ⌫µ ! ⌫⌧ at OPERA [49] only
sees the tail end of the 1st oscillation maximum and the
observation of 5 events on a background of 0.25 ± 0.05
is not significant spectrally and can be equally be fit by
a flat normalisation discrepancy. The precision we do
have is driven by the fact large deviations here cause
violations of unitarity too large in the ⌫e and ⌫µ sectors,
passed through by the geometric Cauchy-Schwartz

constraints.

We must stress that even if the 3� ranges of the
UPMNS elements agree closely with the unitarity case,
this does not equate to the neutrino mixing matrix
being unitary. In the unitary case the correlations are
much stronger and choosing an exact value for any one
the mixing elements drastically reduces the uncertainty
on the remaining elements. To better understand the
level at which we know unitarity is conserved or not, we
plot the resultant ranges for the normalisation in Fig
(2). We see that the ⌫e and ⌫µ normalisation deviations
from unity are relatively well constrained ( 0.06 and
0.07 at 3� CL respectively), primarily by reactor fluxes
and a combination of precision measurements of the rate
and spectra of upward going muon-like events observed
at Super-Kamiokande [53] and the multitude of long
and short baseline accelerator ⌫µ ! ⌫µ disappearance
experiments. We note the ⌫µ normalisation deviation
from unity is constrained slightly (⇡ 1%) better than
the ⌫e normalisation. This is due to the large theoretical
error, 5%, on total flux from reactors assumed [56]. The
remaining normalisation deviations from unity are all
constrained to be . 0.2 - 0.4 at 3� CL.

For the case of the six neutrino unitarity triangles, we
present the allowed ranges for their closures in Fig. (3).
For the three row triangles the bounds originate from a
combination of the corresponding geometric constraints
along with appearance data in the respective channel.
The column triangles, however, are bound by the geomet-
ric constraints only, and as the column normalisations are
proportionally less known, so too are the column unitar-
ity triangles. Only one triangle does not contain a ⌫⌧
element, the ⌫e⌫µ triangle, and hence it is the only tri-
angle in which it is excluded to be open by more than
0.03 at the 3� CL, compared to between 0.1 - 0.2 at the
3� CL for the remaining triangles. This hierarchical sit-
uation will not improve unless precise measurements can
be made in the ⌫⌧ sector.

If one wishes to proceed with measurements of unitar-
ity, without the assumption of an extended UPMNS ma-
trix and its subsequent Cauchy-Schwartz bounds, then
prospects for improvement are essentially limited to mea-
suring the ⌫e normalisation. Improvement of all ⌫e ele-
ments is possible, especially if the new generation reac-
tor experiments, JUNO [57] and RENO50 [58], proceed
as planned. See discussion by X. Qian et al. [12] for
a detailed discussion of the possible improvements. Sig-
nificant improvement in the ⌫µ sector would require the
measurement of ⌫µ disappearance at the solar mass scale,
well beyond what is currently technologically feasible.
Improvements in the indirect 3+N sterile measure-

ments are much more promising, the Fermilab Short
Baseline Neutrino (SBN) [59] program consisting of the
SBND, MicroBooNE and ICARUS experiments on the
Booster beam, will be capable of probing a wide range
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FIG. 3: 1-D ��2 for the absolute value of the closure of the
three row (solid) and three column (dashed) unitarity tri-
angles, fitted with all spectral and normalisation data, when
considering new physics that enters above |�m2| � 10�2 eV2.
There is one unique unitarity triangle, the ⌫e⌫µ triangle, in
that it does not contain any ⌫⌧ elements and hence is con-
strained to be unitary at a level half an order of magnitude
better than the others. By comparison to Fig. 2 one can
clearly see the Cauchy-Schwartz constraints are satisfied.

of parameter space for 3+N models, increasing both the
appearance and disappearance bounds. Subsequently,
the long baseline program DUNE [60] will also be
able to significantly extend the constrained region of
⌫µ ! ⌫e appearance to lower mass di↵erences, leading
to increased constraints on the ⌫e⌫µ unitarity triangle
in this regime. An understanding of the neutrino flux
and cross sectional uncertainties are crucial for unitarity
measurements. Possible future experiments such as
a fully fledged Neutrino Factory [61] or the nuStorm
facility [62], with the uncertainty on their fluxes of the
order 1%, will be able to constrain the ⌫µ normalisation
and ⌫e⌫µ triangle far beyond what is currently obtain-
able. However, no one experiment can probe all scales
and complementarity is vital to definitively make a
statement about unitarity from new low-energy physics,
especially as there is little means to directly measure the
⌫⌧ sector. Improvement in ⌫⌧ appearance requires new
experiments with both an intense, well known beam of
high enough energy ⌫µ or ⌫e to kinematically produce
charged taus, as well as a detector technology capable
of e�ciently identifying them to a degree necessary

for precision high statistics measurements, both of
which are extremely di�cult tasks. Perhaps crucially
for ⌫⌧ measurements, Hyper-Kamiokande [63] will be
incredibly sensitive to atmospherically averaged steriles,
� 0.1 eV2, and will significantly improve the current
bounds on |U⌧1|2 + |U⌧2|2 + |U⌧3|2 in this regime, to
approximately 1� |U⌧1|2 + |U⌧2|2 + |U⌧3|2  0.07 at the
99% CL [64], which would bring it closer inline with the
other sectors.

In this paper we have emphasised the fact that
current experimental bounds on unitarity within the 3⌫
paradigm allows for considerable violation, and without
the unitarity assumption, the precision on the individual
UPMNS elements can vary significantly (up to 104% in
the case of |U⌧3|). However, we find no evidence for non-
unitarity. The prospects of directly measuring all the 12
unitarity constraints with high precision are poor, and
even when one allows for additional model-dependant
sterile searches we can only constrain the amount of
non-unitarity to be . 0.2 - 0.4, for four out of six of
the row and columns normalisations, with the ⌫µ and ⌫e
normalisation deviations from unity constrained to be 
0.07, all at the 3� CL, see Fig. 2. Similarly, five out of
six of the unitarity triangles are only constrained to be
. 0.1 - 0.2, with opening of the remaining ⌫e⌫µ triangle
being constrained to be  0.03, again at the 3� CL, see
Fig. 3. One must be careful when assessing the current
experimental regime with the addition of new physics we
are currently insensitive to, as without the assumption of
unitarity there is much room for new e↵ects, especially
in the ⌫⌧ sector where currently significant information
comes from the unitarity assumption and not direct
measurements.
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FIG. 2: 1-D ��2 for deviation of both UPMNS row (solid) and
column (dashed) normalisations, fitted with all spectral and
normalisation data, when considering new physics that enters
above |�m2| � 10�2eV2.

as |Uµ1| and |Uµ2| only appear in the degenerate com-
bination |Uµ1|2 + |Uµ2|2, they cannot be distinguished
individually. This degeneracy is very weakly broken by
the ⌫µ ! ⌫e appearance experiment T2K [1], and will be
improved upon taking of more data and with future high
statistics NO⌫A [11] results. The addition of this nor-
malisation and sterile data in the 3⌫ unitarity case does
not change anything in the fit. From here on we will
discuss only the main results, as calculated including all
normalisation and sterile search data.

The addition of this sterile search and normalisation
data improves the situation significantly. If we define
the shift in range of allowed values as the ratio of the
di↵erence in 3� ranges without and with unitarity, to
that derived with unitarity, the increase in parameter
space for |Uei|, i = 2, 3 and |Uµi|, i = 1, 2, 3 are all 
10% (4%, 8%, 8%, 7% and 4% respectively), with |Ue1|
taking the majority of the discrepancy in the ⌫e sector,
with an increase of allowed range of 68%, primarily
due to the weaker bounds from KamLAND compared
to the SBL reactors, and that |Ue1|2 forms the bulk of
|Ue1|2 + |Ue2|2 + |Ue3|2. The entire ⌫⌧ sector, however,
may contain substantial discrepancies from unitarity
with shifts in allowed regions of 37%, 46% and 104%
respectively. We have little or no current mechanisms
to directly measure any ⌫⌧ elements and we have not
yet observed any oscillation amplitude peaks, even the
recent 5� discovery of ⌫µ ! ⌫⌧ at OPERA [49] only
sees the tail end of the 1st oscillation maximum and the
observation of 5 events on a background of 0.25 ± 0.05
is not significant spectrally and can be equally be fit by
a flat normalisation discrepancy. The precision we do
have is driven by the fact large deviations here cause
violations of unitarity too large in the ⌫e and ⌫µ sectors,
passed through by the geometric Cauchy-Schwartz

constraints.

We must stress that even if the 3� ranges of the
UPMNS elements agree closely with the unitarity case,
this does not equate to the neutrino mixing matrix
being unitary. In the unitary case the correlations are
much stronger and choosing an exact value for any one
the mixing elements drastically reduces the uncertainty
on the remaining elements. To better understand the
level at which we know unitarity is conserved or not, we
plot the resultant ranges for the normalisation in Fig
(2). We see that the ⌫e and ⌫µ normalisation deviations
from unity are relatively well constrained ( 0.06 and
0.07 at 3� CL respectively), primarily by reactor fluxes
and a combination of precision measurements of the rate
and spectra of upward going muon-like events observed
at Super-Kamiokande [53] and the multitude of long
and short baseline accelerator ⌫µ ! ⌫µ disappearance
experiments. We note the ⌫µ normalisation deviation
from unity is constrained slightly (⇡ 1%) better than
the ⌫e normalisation. This is due to the large theoretical
error, 5%, on total flux from reactors assumed [56]. The
remaining normalisation deviations from unity are all
constrained to be . 0.2 - 0.4 at 3� CL.

For the case of the six neutrino unitarity triangles, we
present the allowed ranges for their closures in Fig. (3).
For the three row triangles the bounds originate from a
combination of the corresponding geometric constraints
along with appearance data in the respective channel.
The column triangles, however, are bound by the geomet-
ric constraints only, and as the column normalisations are
proportionally less known, so too are the column unitar-
ity triangles. Only one triangle does not contain a ⌫⌧
element, the ⌫e⌫µ triangle, and hence it is the only tri-
angle in which it is excluded to be open by more than
0.03 at the 3� CL, compared to between 0.1 - 0.2 at the
3� CL for the remaining triangles. This hierarchical sit-
uation will not improve unless precise measurements can
be made in the ⌫⌧ sector.

If one wishes to proceed with measurements of unitar-
ity, without the assumption of an extended UPMNS ma-
trix and its subsequent Cauchy-Schwartz bounds, then
prospects for improvement are essentially limited to mea-
suring the ⌫e normalisation. Improvement of all ⌫e ele-
ments is possible, especially if the new generation reac-
tor experiments, JUNO [57] and RENO50 [58], proceed
as planned. See discussion by X. Qian et al. [12] for
a detailed discussion of the possible improvements. Sig-
nificant improvement in the ⌫µ sector would require the
measurement of ⌫µ disappearance at the solar mass scale,
well beyond what is currently technologically feasible.
Improvements in the indirect 3+N sterile measure-

ments are much more promising, the Fermilab Short
Baseline Neutrino (SBN) [59] program consisting of the
SBND, MicroBooNE and ICARUS experiments on the
Booster beam, will be capable of probing a wide range
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as a first test of the MiniBooNE low-energy excess 
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 Bounds on non-unitary mixing Giunti For#Dirac##
or#Majorana##

 ! If sterile masses between eV and keV : 

 ! If steriles heavier than electroweak scale: 

U is Unitary and ⌘ 6= 0 makes Ũ non-unitary:

↵ = (e, µ, ⌧)

UU †
= 1

X

j

|U↵j|2 = 1 row normalizations

X

j

U↵jU
⇤
�j = 0 ↵ 6= � row orthogonality

9 conditions (real):
with 4 not involving ⌧

(e2, µ2 and �eµ)
AND 5 involving ⌧ ’s !

UU †
= 1 ) U(U †U � 1) = 0
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Figure 10. Left: constraints (and projected constraints) on the row normalizations Ne, Nµ, and N⌧ at 95% (dark)
and 99% (faint colors) credibility. Right: constraints on the column normalizations N1, N2, and N3 at 95% (dark) and
99% (faint colors) credibility. All results here are obtained under the agnostic assumption.

The left panel of Fig. 10 displays the results of this analysis, projecting down to two-dimensional CR
measuring the row normalizations Ne, Nµ, and N⌧ at 95% and 99% credibility. We see that the analysis of
all current data is consistent with unitarity for these values. Future data will lead to a modest improvement
in the constraint on Nµ, some improvement in Ne, and significant improvement in N⌧ .

Similarly, the right panel of Fig. 10 presents the current constraints, as well as projected future ones,
on the column normalizations N1, N2, and N2, at 95% and 99% credibility. The correlation between mea-
surements of each pair of column normalizations is due to the fact that these constraints are limited by
the measurement of the tau-row elements, |U⌧k|

2. Future data will improve the constraint on each column
normalization by a factor of roughly 3.

Table 3 summarizes the current and expected future measurements of the row and column normalizations
of the LMM. Here, we give the current best-fit (maximum likelihood point) value of each normalization, as
well as the extents of its current 3� CR. We also show the projected future 3� CR, assuming a true value
of NX = 1, demonstrating the improvement attributable to future data. Our projected constraint on Ne is
1.1%, consistent with the o�cial JUNO analysis, which reports a 1.2% constraint on Ne.

Figure 11 presents the results on the closures of di↵erent triangles t↵� and tkl. Each panel in this figure
presents constraints on the real and imaginary part of t↵� (top row) or tkl (bottom row) at 95% credibility
(dark) and 99% credibility (faint). We draw circles corresponding to constant values of the magnitude of |t↵� |

2

and |tkl|
2 as labeled, where each successive inward circle is an order of magnitude smaller. When constraining

te⌧ and tµ⌧ , the expected future constraints are nearly degenerate with the current ones – constraints here
are dominated by the sterile neutrino searches discussed in Section 3, specifically the NOMAD and CHORUS
results discussed in Table 2. Constraints on tµe will improve modestly once information from DUNE and
JUNO are incorporated. In contrast, measurements of the closures of the di↵erent pairs of columns will
improve significantly with future data. Currently, each of these can be constrained |tkl|

2 . 10�1 at 95%
credibility. With future data, this will improve to roughly |tkl| . 10�2 for each of the three triangles. We
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Table 3. Summary of current and expected future constraints on the row (N↵) and column (Nk) normalizations, under
the agnostic assumption.

Best-fit (current) 3� (current) 3� (future)

Ne 1.00 [0.94, 1.05] [0.97, 1.03]
Nµ 0.99 [0.96, 1.04] [0.96, 1.03]
N⌧ 1.12. [0.32, 1.82] [0.79, 1.23]

N1 1.01 [0.84, 1.22] [0.89, 1.12]
N2 1.05 [0.75, 1.27] [0.92, 1.10]
N3 1.05 [0.67, 1.40] [0.90, 1.10]
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Figure 11. Constraints (and projected constraints) on the real (x-axes) and imaginary (y-axes) parts of the closures
of the six unitarity triangles. Dashed circles indicate contours corresponding to fixed |txy|2, with the outer one in each
panel as labeled. The inner dashed circles are an order of magnitude smaller |txy|2 than the outer ones. Here we
analyze data under the agnostic assumption.

– 29 –

Ellis, Kelly and Li: 2008.01088

IMPORTANT NOTE:  SCALE CHANGES !

2.2 Mixing Matrix Parameterizations

In the standard scenario, ULMM is a 3⇥3 unitary matrix. It is well-known that in order to parameterize such
a matrix, three angles and three complex phases are required. Two of the (Majorana) phases are irrelevant
for neutrino oscillations, and are unphysical if neutrinos are Dirac particles. The standard parameterization
employs three mixing angles, ✓12, ✓13, and ✓23, and one complex phase �CP. Often referred to as the PMNS [1,
3] or PDG [9] parameterization, this form of the LMM is

ULMM = UPMNS ⌘

0

@
c12c13 s12c13 s13e�i�CP

�s12c23 � c12s13s23ei�CP c12c23 � s12s13s23ei�CP s23c13
s12s23 � c12c23s13ei�CP �c12s23 � s12c23s13ei�CP c13c23

1

A , (2.3)

where sij ⌘ sin ✓ij and cij ⌘ cos ✓ij . The mixing angles are often referred to by the regime of neutrino
oscillations in which they have been studied in the most detail: solar (✓12), reactor (✓13), and atmospheric
(✓23). A number of global fit e↵orts in the three-flavor hypothesis have been performed, leading to relatively
precise understanding of the mixing angles under this hypothesis [61–64].

More generally, a complex 3 ⇥ 3 matrix U can be described by eighteen real parameters. There are 9
conditions for relating a generic complex matrix for leptonic mixing to a unitary one. These conditions can
be obtained from the requirement that a unitary matrix satisfies U †U = I. This is equivalent to requiring
that all columns of the matrix are normalized to one:

Nk ⌘ |Uek|
2 + |Uµk|

2 + |U⌧k|
2 = 1 (k = 1, 2, 3), (2.4)

as well as requiring that the column unitarity triangles close:

tkl ⌘ U⇤
ekUel + U⇤

µkUµl + U⇤
⌧kU⌧ l = 0 (k 6= l; k, l = 1, 2, 3). (2.5)

Note that these are nine real constraints as tkl can be complex. Because U †U is Hermitian, the unitarity
condition can equivalently be written as UU † = I, which can be translated to row normalization conditions:

N↵ ⌘ |U↵1|
2 + |U↵2|

2 + |U↵3|
2 = 1 (↵ = e, µ, ⌧), (2.6)

and the closure of row unitarity triangles:

t↵� ⌘ U⇤
↵1U�1 + U⇤

↵2U�2 + U⇤
↵3U�3 = 0 (↵ 6= �; ↵, � = e, µ, ⌧). (2.7)

For the general case where U is a non-unitary 3 ⇥ 3 matrix, the number of real parameters needed to
describe the matrix for neutrino oscillation is 18 � 3 � 2 = 13, where 3 phases can be absorbed by charged
lepton fields and 2 Majorana phases do not participate in oscillations. Equivalently, one can see that 13
parameters are required, as a unitary LMM would have 4 parameters, and the extension to include potential
non-unitarity involves relaxing 9 unitarity conditions. The magnitudes of the elements of the mixing matrix
are parameterization-independent, therefore we choose to adopt the following parameterization:

ULMM ⌘

0

@
|Ue1| |Ue2| ei�e2 |Ue3| ei�e3

|Uµ1| |Uµ2| |Uµ3|

|U⌧1| |U⌧2| ei�⌧2 |U⌧3| ei�⌧3

1

A . (2.8)

Here, we have nine magnitudes and four CP-violating phases.3 Going forward, we refer to the parameteriza-
tion given in Eq. (2.8) as the Magnitudes & Phases (MP) parameterization. Note that in this case, the row
and column normalizations can be larger than 1, and the 13 parameters are completely independent of each
other. This parameterization applies straightforwardly to the agnostic case described above.

3The four phases can be assigned to any 2 ⇥ 2 sub-matrix.
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Table 4. Summary of current and expected future constraints on the row closures |t↵� | and column closures |tkl|,
under the agnostic assumption.

Current 3� Upper Limit Future 3� Upper Limit

|teµ| 3.2 ⇥ 10�2 2.5 ⇥ 10�2

|te⌧ | 1.3 ⇥ 10�1 No Improvement
|tµ⌧ | 1.6 ⇥ 10�2 No Improvement

|t12| 2.5 ⇥ 10�1 1.0 ⇥ 10�1

|t13| 3.2 ⇥ 10�1 1.2 ⇥ 10�1

|t23| 3.3 ⇥ 10�1 1.1 ⇥ 10�1

summarize the current and future 3� credibility upper limits on the triangle closures in Table 4.
The analysis yielding Figs. 10 and 11 was conducted assuming the agnostic case of Section 2.2, whereby

the matrix of which the LMM is a sub-matrix need not be unitary. The sub-matrix approach was taken in
Ref. [14], where it was pointed out that assuming unitarity of the larger matrix leads to strong constraints from
Cauchy-Schwarz inequalities. By remaining agnostic about the larger matrix, the improved measurement
capability of future data is more apparent. An analysis assuming the larger matrix is unitary is contained in
Section 6.2.

6 Secondary Results with Alternate Assumptions

As discussed throughout this work, di↵erent assumptions regarding the origin of unitarity violation, as well
as which datasets are included in the analysis, can have significant impact on the resulting constraints on
the unitarity of the LMM. The primary results of our work, where we analyzed all possible data under the
agnostic case, were shown in Section 5. In this section, we explore two alternate assumptions. In Section 6.1,
we repeat our analysis without including any short-baseline sterile neutrino searches (discussed in Section 3.7
and Table 2). In Section 6.2, we conduct an analysis in the sub-matrix case of Section 2.2, comparing the
results with those obtained in the agnostic case presented above.

6.1 Impact of Short-Baseline Sterile Neutrino Searches

In the bulk of the analyses performed in our work, we have included results of short-baseline sterile neutrino
searches, with results adapted from these sterile neutrino searches reinterpreted as limits on unitarity violation
(see Table 2 for a summary of these results). To better understand how unitarity constraints rely on sterile
neutrino searches, we repeat the analyses of the main text surrounding Fig. 11 without short-baseline results.

Figure 12 shows the results. Here we note that the ranges on each of the panels in Fig. 12 measuring
t↵� and tkl are much larger than the corresponding ranges in Fig. 11. However, it is apparent that in the
absence of sterile searches, future data from IceCube, DUNE, JUNO, and T2HK would nevertheless allow
us to understand the closure of all triangles of the LMM considerably better than current data allow. As in
Fig. 11, we draw lines of constant |t↵� |

2 and |tkl|2 = 10�1 and 10�2 in each panel, where the outer (inner)
dashed line corresponds to a constant 10�1 (10�2) in these planes.

Table 5 summarizes the numerical results. Comparing Tables 4 and 5, the improvement in the absence
of sterile searches is much more dramatic, highlighting the importance of such experiments. We have not
included any additional short-baseline searches in our future projections, as we do not expect any upcoming
experiments to provide stronger sensitivity in the “averaged-out” regime [109, 117, 122, 123] (as discussed in
Section 3.7) than those summarized in Table 2.

Comparing the measurements of the individual matrix-elements-squared |U↵k|
2, as well as the row and

column normalization conditions N↵ and Nk, is di�cult in this scenario. Short-baseline sterile neutrino
searches, particularly the information from ⌫⌧ appearance that |te⌧ |2 and |tµ⌧ |2 are small, provide significant
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Figure 5. Constraints on the non-unitarity. Left: The normalization deviations from unity of each
row and column. Right: The deviations of unitarity triangle closure. Any non-zero terms among
these quantities indicate non-unitarity. No signal of unitarity violation is found. The curves show
upper bounds on the corresponding non-unitary terms.

to be . 0.05 and < 0.02, worse than ⇣eµ. The precision measurements in the ⌫e and
⌫µ sectors provide dominant constraints to ⇣e⌧ and ⇣µ⌧ via Cauchy-Schwarz inequalities.
The remaining three column-wise unitarity triangles, bounded only by the Cauchy-Schwarz
inequalities, are known to be < 0.07 � 0.08, at 3� CL. One can roughly estimate these
constraints from �1, �2, and �3, with ⇣ij ⇡

p
�i�j .

5 Conclusions

The development in neutrino oscillations in the past decades allows us to conduct precision
measurements of the neutrino mixing in the active sector (UNU ). Entering the new precision
era, we are able to explore other possibilities, e.g. the 3⌫ unitarity-violated neutrino mixing
hypothesis.

An analysis of neutrino oscillations was performed without unitarity assumption in the
3⌫ picture. We have combined the medium and long-baseline reactor, solar, long-baseline
accelerator neutrino data to constrain the mixing matrix in the active sector UNU . We
have found that elements Uei are measured to be the best among all sectors (3� uncertainty
< 20%). At the same confidence level, the uncertainties > 20% were obtained in |Uµi|

in the current global analysis. Though currently data for the ⌫⌧ sector are limited, via
Cauchy-Scharz ineqauilities Eqs. (2.10) and (2.11) the constraints for this sector can be
passed from that in the µ sector. And, therefore the size of uncertainties for the ⌫µ and ⌫⌧
sectors are similar. Our result prefers |Uµ3|

2 > 1/2, which corresponds to the upper-octant
solution in the standard 3⌫ scheme. A negative correlation was noticed between |Uµ1| and
|Uµ2|, as the ⌫µ disappearance measurements determine the combination |Uµ1|

2 + |Uµ2|
2.

The ⌫e appearance measurements help with distinguishing |Uµ1| and |Uµ2| at 1� C.L., as
well as the "octant-like degeneracy".
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sectors are similar. Our result prefers |Uµ3|

2 > 1/2, which corresponds to the upper-octant
solution in the standard 3⌫ scheme. A negative correlation was noticed between |Uµ1| and
|Uµ2|, as the ⌫µ disappearance measurements determine the combination |Uµ1|

2 + |Uµ2|
2.

The ⌫e appearance measurements help with distinguishing |Uµ1| and |Uµ2| at 1� C.L., as
well as the "octant-like degeneracy".
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have found that elements Uei are measured to be the best among all sectors (3� uncertainty
< 20%). At the same confidence level, the uncertainties > 20% were obtained in |Uµi|

in the current global analysis. Though currently data for the ⌫⌧ sector are limited, via
Cauchy-Scharz ineqauilities Eqs. (2.10) and (2.11) the constraints for this sector can be
passed from that in the µ sector. And, therefore the size of uncertainties for the ⌫µ and ⌫⌧
sectors are similar. Our result prefers |Uµ3|

2 > 1/2, which corresponds to the upper-octant
solution in the standard 3⌫ scheme. A negative correlation was noticed between |Uµ1| and
|Uµ2|, as the ⌫µ disappearance measurements determine the combination |Uµ1|
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The ⌫e appearance measurements help with distinguishing |Uµ1| and |Uµ2| at 1� C.L., as
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Thank You ! 

Interested in how the universe works? Read symmetry, an online magazine about particle physics 
and its connections to life and other areas of science. Published by Fermi National Accelerator 
Laboratory and SLAC National Accelerator Laboratory. symmetrymagazine.org

OSCILLATING

Neutrinos come in three types, called flavors. 
There are electron neutrinos, muon neutri-
nos and tau neutrinos. One of the strangest 
aspects of neutrinos is that they don’t pick 
just one flavor and stick to it. They oscillate 
between all three.

MYSTERIOUS

Neutrinos are mysterious. Experiments seem 
to hint at the possible existence of a fourth 
type of neutrino: a sterile neutrino, which would 
interact even more rarely than the others. 

VERY MYSTERIOUS

Scientists also wonder if neutrinos are their 
own antiparticles. If they are, they could have 
played a role in the early universe, right after 
the big bang, when matter came to outnumber 
antimatter just enough to allow us to exist.

ABUNDANT

Of all particles with mass, neutrinos are the 
most abundant in nature. They’re also some  
of the least interactive. Roughly a thousand 
trillion of them pass harmlessly through your 
body every second.

FUNDAMENTAL

Neutrinos are fundamental particles, which 
means that—like quarks and photons and  
electrons—they cannot be broken down into 
any smaller bits.

ELUSIVE

Neutrinos are difficult but not impossible to  
catch. Scientists have developed many differ-
ent types of particle detectors to study them.

LIGHTWEIGHT

Neutrinos weigh almost nothing, and they 
travel close to the speed of light. Neutrino 
masses are so small that so far no experi-
ment has succeeded in measuring them. The 
masses of other fundamental particles come 
from the Higgs field, but neutrinos might get 
their masses another way.

DIVERSE

Neutrinos are created in many processes in 
nature. They are produced in the nuclear 
reactions in the sun, particle decays in the 
Earth, and the explosions of stars. They are 
also produced by particle accelerators and  
in nuclear power plants.

 NEUTRINOS
  ARE…
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